The search functionality is under construction.

Author Search Result

[Author] Mamoru SAWAHASHI(116hit)

101-116hit(116hit)

  • Field Experiments on Throughput Performance above 100 Mbps in Forward Link for VSF-OFCDM Broadband Wireless Access

    Yoshihisa KISHIYAMA  Noriyuki MAEDA  Kenichi HIGUCHI  Hiroyuki ATARASHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E88-B No:2
      Page(s):
    604-614

    This paper presents throughput performance along with power profiles in the time and frequency domains over 100 Mbps based on field experiments using the implemented Variable Spreading Factor-Orthogonal Frequency and Code Division Multiplexing (VSF-OFCDM) transceiver with a 100-MHz bandwidth in a real multipath fading channel. We conducted field experiments in which a base station (BS) employs a 120-degree sectored beam antenna with the antenna height of 50 m and a van equipped with a mobile station (MS) is driven at the average speed of 30 km/h along measurement courses that are approximately 800 to 1000 m away from the BS, where most of the locations along the courses are under non-line-of-sight conditions. Field experimental results show that, by applying 16QAM data modulation and Turbo coding with the coding rate of R = 1/2 to a shared data channel together with two-branch antenna diversity reception, throughput over 100 and 200 Mbps is achieved when the average received signal-to-interference plus noise power ratio (SINR) is approximately 6.0 and 14.0 dB, respectively in a broadband channel bandwidth where a large number of paths such as more than 20 are observed. Furthermore, the location probability for achieving throughput over 100 and 200 Mbps becomes approximately 90 and 20% in these measurement courses, which experience a large number of paths, when the transmission power of the BS is 10 W with a 120-degree sectored beam transmission.

  • Field Experiments on Open-Loop Type Transmit Diversity in OFDM Radio Access

    Shohei TSUCHIDA  Mamoru SAWAHASHI  Hidekazu TAOKA  Kenichi HIGUCHI  

     
    PAPER

      Vol:
    E92-B No:5
      Page(s):
    1705-1713

    This paper presents field experiments on open-loop transmit diversity in downlink OFDM based radio access conducted in a measurement course in Yokosuka city near Tokyo. The experimental results obtained under actual propagation channel conditions show that Space Frequency Block Code (SFBC) and the combination of SFBC and Frequency Switched Transmit Diversity (FSTD) (or Cyclic Delay Diversity (CDD)) are the most promising open-loop transmit diversity schemes for two- and four-antenna transmission, respectively, from the viewpoint of the required average received signal-to-noise power ratio (SNR).

  • Pilot Channel Assisted MMSE Combining in Forward Link for Broadband OFCDM Packet Wireless Access

    Noriyuki MAEDA  Hiroyuki ATARASHI  Sadayuki ABETA  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E85-A No:7
      Page(s):
    1635-1646

    This paper proposes a pilot channel assisted minimum mean square error (MMSE) combining scheme in orthogonal frequency and code division multiplexing (OFCDM) based on actual signal-to-interference power ratio (SIR) estimation, and investigates the throughput performance in a broadband channel with a near 100-MHz bandwidth. In the proposed MMSE combining scheme, the combining weight of each sub-carrier component is accurately estimated from the channel gain, noise power, and transmission power ratio of all the code-multiplexed channels to the desired one, by exploiting the time-multiplexed common pilot channel in addition to the coded data channel. Simulation results elucidate that the required average received signal energy per bit-to-noise spectrum density ratio (Eb/N0) for the average packet error rate (PER) = 10-2 is improved by 0.6 and 1.2 dB by using the proposed MMSE combining instead of the conventional equal gain combining (EGC) in a 24-path Rayleigh fading channel (exponential decay path model, maximum delay time is approximately 1 µsec) in an isolated cell environment, when the number of multiplexed codes = 8 and 32, respectively, with the spreading factor of 32. Furthermore, when the average received Eb/N0 = 10 dB, the achievable throughput, i.e., the number of simultaneously multiplexed codes for the average PER = 10-2 in the proposed MMSE combining, is increased by approximately 1.3 fold that of the conventional EGC.

  • Investigation of Inter-Carrier Interference due to Doppler Spread in OFCDM Broadband Packet Wireless Access

    Hiroyuki ATARASHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E85-B No:12
      Page(s):
    2684-2693

    This paper investigates the impact of inter-carrier interference (ICI) due to Doppler spread on the packet error rate (PER) performance in Orthogonal Frequency and Code Division Multiplexing (OFCDM) packet wireless access employing turbo coding in a multipath fading channel, and describes the optimization of the sub-carrier spacing, Δ f, i.e., the number of sub-carriers, Nc, with an approximate 50-100 MHz bandwidth. Simulation results show that although the uncoded OFCDM in a 1-path flat Rayleigh fading channel is affected by the ICI caused by the Doppler spread when the maximum Doppler frequency, fD, becomes more than 5% of Δ f, OFCDM employing turbo coding in a 24-path Rayleigh fading channel is robust against Doppler spread and the degradation is not apparent until fD reaches more than 10% of Δ f. This is because the turbo coding gain and the frequency diversity effect compensate for the degradation due to ICI. Meanwhile, the PER performance with a larger Nc is degraded, since the effect of the error correction capability becomes smaller due to the larger variance of the despread OFCDM symbols associated with the narrower spreading bandwidth in the frequency domain. Consequently, along with the packet frame efficiency for accommodating the guard interval to compensate for the maximum multipath delay time of 1 µsec, we clarify that the optimum number of sub-carriers is approximately 512-1024 (the corresponding Δ f becomes 156.3-78.1 kHz) for broadband OFCDM packet wireless access assuming a 50-100 MHz bandwidth.

  • Experiments on Inter-Sector Diversity Using Maximal Ratio Combining in W-CDMA Reverse Link

    Akihito MORIMOTO  Kenichi HIGUCHI  Satoru FUKUMOTO  Mamoru SAWAHASHI  Fumiyuki ADACHI  

     
    PAPER

      Vol:
    E84-A No:12
      Page(s):
    3012-3025

    This paper evaluates the effect of inter-sector diversity with maximal ratio combining (MRC) coupled with coherent Rake combining and 2-branch antenna diversity reception in the transmit-power-controlled wideband direct sequence code division multiple access (W-CDMA) reverse link. We first elucidate based on laboratory experiments that the required average transmit signal energy per bit-to-background noise spectrum density ratio (Eb/N0) at the average bit error rate (BER) of 10-3 with inter-sector diversity using two sectors is decreased by approximately 1.4, 1.0, and 0.2 dB compared to that with inter-cell site diversity using two cell sites with antenna diversity reception due to the superiority of MRC to selection combining (SC), when the difference in the average path loss between a base station (BS) and a mobile station (MS) is Δ12 = 0, 3, and 6 dB, respectively. We also clarify in actual field experiments that the inter-sector diversity associated with Rake time diversity and antenna diversity further decreases the required average transmit power of a MS if the number of resolved paths is small such as 1 or 2 in each sector reception, even when the fading correlation between sectors is relatively large. Furthermore, we show that the required average transmit power of a MS for satisfying the average BER of 10-3 with inter-sector diversity is decreased above approximately 2.0-2.5 dB compared to that with one-sector reception, owing to the significantly increased inter-sector diversity effect in addition to the Rake time diversity and antenna diversity, when the fading correlation averaged over the measurement course is approximately 0.7.

  • Physical Cell ID Detection Probability Using NB-IoT Synchronization Signals in 28-GHz Band

    Daisuke INOUE  Kyogo OTA  Mamoru SAWAHASHI  Satoshi NAGATA  

     
    PAPER

      Pubricized:
    2021/03/17
      Vol:
    E104-B No:9
      Page(s):
    1110-1119

    This paper presents the physical-layer cell identity (PCID) detection probability using the narrowband primary synchronization signal (NPSS) and narrowband secondary synchronization signal (NSSS) based on the narrowband Internet-of-Things (NB-IoT) radio interface considering frequency offset and the maximum Doppler frequency in the 28-GHz band. Simulation results show that the autocorrelation based NPSS detection method is more effective than the cross-correlation based NPSS detection using frequency offset estimation and compensation before the NPSS received timing detection from the viewpoints of PCID detection probability and computational complexity. We also show that when using autocorrelation based NPSS detection, the loss in the PCID detection probability at the carrier frequency of fc =28GHz compared to that for fc =3.5GHz is only approximately 5% at the average received signal-to-noise ratio (SNR) of 0dB when the frequency stability of a local oscillator of a user equipment (UE) set is 20ppm. Therefore, we conclude that the multiplexing schemes and sequences of NPSS and NSSS based on the NB-IoT radio interface associated with autocorrelation based NPSS detection will support the 28-GHz frequency spectra.

  • Experimental Evaluation of Coherent Adaptive Antenna Array Diversity Receiver Employing Optical Fiber Interface in IF Stage

    Taisuke IHARA  Hidekazu TAOKA  Kenichi HIGUCHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E86-A No:7
      Page(s):
    1676-1688

    This paper investigates based on laboratory experiments the multiuser interference suppression effect of the coherent adaptive antenna array diversity (CAAAD) receiver employing an optical fiber feeder in the intermediate frequency (IF) stage, aiming at the practical use of adaptive antenna array beam forming techniques based on the W-CDMA air interface. We employed a configuration in which the optical fiber conversion, i.e., electrical-to-optical (E/O) conversion (vice versa (O/E)), is performed on a received signal amplified by an automatic gain control (AGC) amplifier in the IF stage, to abate the impact of the noise component generated by the E/O (O/E) converters. We first show by computer simulation the superiority of the optical fiber conversion in the IF stage to that in the radio frequency (RF) stage based on the achievable bit error rate (BER) performance. Furthermore, experimental results elucidate that the loss in the required transmit signal energy per bit-to-background noise power spectrum density ratio (Eb/N0) of the implemented CAAAD receiver at the average BER of 10-3 employing the optical fiber feeders in the IF stage compared to that with coaxial cables is within a mere 0.2 dB (six antennas, three users, two-path Rayleigh fading channel model, and the ratio of the target signal energy per bit-to-interference power spectrum density ratio (Eb/I0) of the desired user to that of the interfering users for fast transmission power control (TPC) is ΔEb/I0=-15 dB).

  • Antenna Diversity Reception Appropriate for MMSE Combining in Frequency Domain for Forward Link OFCDM Packet Wireless Access

    Noriyuki MAEDA  Hiroyuki ATARASHI  Sadayuki ABETA  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E85-B No:10
      Page(s):
    1966-1977

    This paper presents an optimum antenna diversity combining method associated with despreading that employs Minimum Mean Square Error (MMSE) combining over the frequency domain in a frequency-selective fading channel for forward link Orthogonal Frequency and Code Division Multiplexing (OFCDM) wireless access, in order to achieve the maximum radio link capacity. Simulation results considering various propagation channel conditions elucidate that the antenna diversity combining method with Equal Gain Combining (EGC) subsequent to the despreading employing MMSE combining based on pilot symbol-assisted channel estimation and interference power estimation can decrease the required average received signal energy per bit-to-background noise power spectrum density ratio (Eb/N0) the most, taking into account the impact of the inter-code interference. Furthermore, we clarify that the required average received Eb/N0 for the average packet error rate of 10-2 employing the diversity combining scheme with EGC after despreading with MMSE combining is improved by approximately 0.3 dB compared to the diversity combining scheme with EGC before despreading with MMSE combining at the number of code-multiplexing of 24 for the spreading factor of 32 in a 24-path Rayleigh fading channel.

  • Radio Link Capacity Comparison between MC/DS-CDMA and MC-CDMA in Reverse Link Broadband Wireless Access

    Shingo SUWA  Hiroyuki ATARASHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E86-A No:7
      Page(s):
    1645-1655

    This paper compares the radio link capacity between multi-carrier/DS-CDMA (MC/DS-CDMA) and multi-carrier CDMA (MC-CDMA) for reverse-link broadband packet wireless access taking into consideration: the asynchronous signal reception at the receiver; the path timing or symbol timing detection of all major subject factors; and the channel estimation error. Simulation results show that although the influence of the asynchronous signal reception on the packet error rate (PER) performance in MC-CDMA is slight, the degradation caused by the channel estimation error in MC-CDMA is severe compared to that caused by the path timing detection error in MC/DS-CDMA. Consequently, the required average received signal energy per bit-to-background noise spectrum density ratio (Eb/N0) at the average PER of 10-2 in MC/DS-CDMA is reduced by approximately 4.5 dB compared to that in MC-CDMA assuming a 12-path exponential decayed Rayleigh fading channel. Furthermore, the number of accommodated users in MC/DS-CDMA is 2.5 fold greater than that in MC-CDMA employing two-branch antenna diversity reception. Therefore, we conclude that MC/DS-CDMA is more appropriate than MC-CDMA for the reverse link broadband packet wireless access, and that it has advantageous features such as an inherently much lower peak-to-average power ratio compared to MC-CDMA, which accompanies a high peak-to-average power ratio causing an increase in the back-off of the power amplifier.

  • Efficient Random Access Channel Transmission Method Using Packet Retransmission According to QoS

    Yousuke IIZUKA  Motohiro TANNO  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E86-A No:7
      Page(s):
    1669-1675

    This paper proposes an efficient random access channel (RACH) transmission method that utilizes soft-combined consecutively retransmitted message data packets according to the Quality of Service (QoS) requirements for broadband multi-carrier/DS-CDMA (MC/DS-CDMA) in the reverse link. In the proposed scheme, the relative transmission power of a message from that of a successfully detected preamble for non-real time (NRT) type traffic data is significantly reduced by soft-combining several retransmitted message data packets thanks to time diversity since the delay requirement is relaxed. Meanwhile, for real time (RT) type traffic data, the relative transmission power of the message from that of the detected preamble is increased in order to reduce the packet error rate with a limited number of retransmissions. Simulation results elucidate that the total required average received signal energy per bit-to-background noise power spectrum density ratio (Eb/N0) for error-free transmission with time diversity for NRT type traffic data is reduced by more than 2 dB compared to that for conventional RACH without the relative transmission power control for a wide rage of fading maximum Doppler frequencies.

  • Comparison of Packet Scheduling Algorithms Focusing on User Throughput in High Speed Downlink Packet Access

    Yoshiaki OFUJI  Sadayuki ABETA  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E86-B No:1
      Page(s):
    132-141

    This paper compares by computer simulation the achievable throughput performance employing fast packet scheduling algorithms focusing on the throughput of each user in High Speed Downlink Packet Access (HSDPA). Three packet scheduling algorithms are employed: the Maximum carrier-to-interference power ratio (CIR), Proportional Fairness (PF), and Round Robin (RR) methods. The simulation results elucidate that although the Maximum CIR method achieves an aggregated user throughput within a cell higher than that using the PF and RR methods, the PF method is advantageous because it enhances the user throughput for a large number of users with a lower received signal-to-interference power ratio (SIR), who are located outside the normalized distance of 0.6-0.7 from a cell site (this corresponds to the area probability of 50-60% within the cell) compared to the Maximum CIR method. It is also shown that when the PF method is employed, the probability of user throughput of greater than 2 Mbps in the vicinity of the cell site becomes approximately 45% (5%) for L = 1-path (2-path) fading channel, while it is almost 80% (50%) when using the Maximum CIR method. Finally, we show that the average user throughput in a 2-path Rayleigh fading channel is reduced by approximately 30% compared to that in a 1-path channel due to severe multipath interference (MPI) and that the average user throughput is strongly affected by the total traffic produced within a cell, which is directly dependent on the number of users within a cell and the data size per packet call.

  • Multipath Interference Canceller Employing Multipath Interference Replica Generation with Previously Transmitted Packet Combining for Incremental Redundancy in HSDPA

    Nobuhiko MIKI  Sadayuki ABETA  Hiroyuki ATARASHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E86-B No:1
      Page(s):
    142-153

    This paper proposes a multipath interference canceller (MPIC) employing multipath interference (MPI) replica generation (MIG) utilizing previously transmitted packet combining (PTPC), which is well-suited to incremental redundancy, in order to achieve a peak throughput of nearly 8 Mbps in a multipath fading environment in high-speed downlink packet access (HSDPA). In our scheme, more accurate MPI replica generation is possible by generating MPI replicas utilizing the soft-decision symbol sequence of the previously transmitted packets in addition to that of the latest transmitted packet. Computer simulation results elucidate that the achievable throughput of the MPIC employing MIG-PTPC is increased by approximately 100 kbps and 200 kbps and the required average received signal energy per symbol-to-background noise power spectrum density ratio (Es/N0) per antenna at the throughput of 0.8 normalized by the maximum throughput is improved by about 0.3 and 0.7 dB compared to that of the MPIC using the soft-decision symbol sequence after Rake combining of the last transmitted packet both in 2- and 3-path Rayleigh fading channels for QPSK and 16QAM data modulations, respectively. Furthermore, we clarify that the maximum peak throughput using the proposed MPIC with MIG-PTPC coupled with incremental redundancy achieves approximately 7 Mbps and 8 Mbps with 16QAM and 64QAM data modulations in a 2-path Rayleigh fading channel, respectively, within a 5-MHz bandwidth.

  • Experiments on Coherent Adaptive Antenna Array Diversity Receiver Based on Antenna-Weight Generation Common to Paths in W-CDMA Reverse Link

    Hidekazu TAOKA  Shinya TANAKA  Taisuke IHARA  Kenichi HIGUCHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E86-B No:1
      Page(s):
    191-205

    This paper presents laboratory and field experimental results of the coherent adaptive antenna array diversity (CAAAD) receiver employing receiver antenna-weight generation common to all Rake-combined paths (hereafter path-common weight generation method) in the W-CDMA reverse link, in order to elucidate the suitability of the path-common weight generation method in high-elevation antenna environments such as cellular systems with a macrocell configuration. Laboratory experiments using multipath fading simulators and RF phase shifters elucidate that even when the ratio of the target Eb/I0 of the desired to interfering users is Δ Eb/I0=-12 dB, the increase in the average transmit Eb/N0 employing the CAAAD receiver coupled with fast transmission power control (TPC) using outer-loop control from that for Δ Eb/I0=0 dB is within only 1.0 dB owing to the accurate beam and null steering associated with fast TPC. Furthermore, field experiments demonstrate that the required transmission power at the average block error rate (BLER) of 10-2 employing the CAAAD receiver with four antennas is reduced by more than 2 dB compared to that using a four-branch space diversity receiver using maximum ratio combining (MRC) with the fading correlation between antennas of 0 when Δ Eb/I0=-15 dB and that the loss in the required transmission power of the CAAAD receiver in the same situation as that in a single-user environment is approximately 1 dB. The field experimental results in an actual propagation environment suggest that the CAAAD receiver is effective in suppressing multiple access interference, thus decreasing the required transmission power when the gap in the direction of arrival between the desired user and interfering users is greater than approximately 20 degrees.

  • Variable Spreading Factor-OFCDM with Two Dimensional Spreading that Prioritizes Time Domain Spreading for Forward Link Broadband Wireless Access

    Noriyuki MAEDA  Yoshihisa KISHIYAMA  Hiroyuki ATARASHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E88-B No:2
      Page(s):
    487-498

    This paper proposes the optimum design for adaptively controlling the spreading factor in Orthogonal Frequency and Code Division Multiplexing (OFCDM) with two-dimensional spreading according to the cell configuration, channel load, and propagation channel conditions, assuming the adaptive modulation and channel coding (AMC) scheme employing QPSK and 16QAM data modulation. Furthermore, we propose a two-dimensional orthogonal channelization code assignment scheme to achieve skillfully orthogonal multiplexing of multiple physical channels. We first demonstrate the reduction effect of inter-code interference by the proposed two-dimensional orthogonal channelization code assignment. Then, computer simulation results show that in time domain spreading, the optimum spreading factor, except for an extremely high mobility case such as for the fading maximum Doppler frequency of fD = 1500 Hz, becomes SFTime = 16. Furthermore, it should be decreased to SFTime = 8 for such a very fast fading environment using 16QAM data modulation. We also clarify when the channel load is light such as Cmux/SF = 0.25 (Cmux and SF denote the number of multiplexed codes and total spreading factor, respectively), the required average received signal energy per symbol-to-noise power spectrum density ratio (Es/N0) is reduced as the spreading factor in the frequency domain is increased up to say SFFreq = 32 for QPSK and 16QAM data modulation. When the channel load is close to full such as when Cmux/SF = 0.94, the optimum spreading factor in the frequency domain is SFFreq = 1 for 16QAM data modulation and SFFreq = 1 to 8 for QPSK data modulation according to the delay spread. Consequently, by setting several combinations of spreading factors in the time and frequency domains, the near maximum link capacity is achieved both in cellular and hotspot cell configurations assuming various channel conditions.

  • Physical Channel Structures and Cell Search Method for Scalable Bandwidth for OFDM Radio Access in Evolved UTRA Downlink

    Motohiro TANNO  Kenichi HIGUCHI  Satoshi NAGATA  Yoshihisa KISHIYAMA  Mamoru SAWAHASHI  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E90-B No:12
      Page(s):
    3622-3631

    This paper proposes physical channel structures and a cell search method for OFDM based radio access in the Evolved UTRA (UMTS Terrestrial Radio Access) downlink, which supports multiple scalable transmission bandwidths from 1.25 to 20 MHz. In the proposed physical channel structures, the central sub-carrier of the OFDM signal is located on the frequency satisfying the 200-kHz raster condition regardless of the transmission bandwidth of the cell site. Moreover, the synchronization channel (SCH) and broadcast channel (BCH), which are necessary for cell search, are transmitted in the central part of the entire transmission spectrum with a fixed bandwidth. In the proposed cell search method, a user equipment (UE) acquires the target cell in the cell search process in the initial or connected mode employing the SCH and possibly the reference signal, which are transmitted in the central part of the given transmission bandwidth. After detecting the target cell, the UE decodes the common control information through the BCH, which is transmitted at the same frequency as the SCH, and identifies the transmission bandwidth of the cell to be connected. Computer simulations show the fast cell search performance made possible by using the proposed SCH structure and the cell search method.

  • Wideband Wireless Access Based on DS-CDMA

    Fumiyuki ADACHI  Mamoru SAWAHASHI  

     
    INVITED PAPER

      Vol:
    E81-B No:7
      Page(s):
    1305-1316

    Wideband wireless access based on direct sequence code division multiple access, called coherent multi-rate W-CDMA in this paper, designed for next generation mobile communications systems is introduced. It employs inter-cell asynchronous operation with a fast cell search algorithm, orthogonal multi-spreading factor (SF) forward links, and pilot symbol assisted coherent reverse and forward links. Inter-cell asynchronous cell site operation facilitates the continuous deployment of the system from outdoors to indoors. An orthogonal multi-SF forward link allows flexible offering of different multi-rate services to users without losing orthogonality. Gains in the radio link capacity and coverage are obtained from the use of coherent Rake combining and fast transmit power control (TPC) in both forward and reverse links. Computer simulation and field experiment results of the coherent multi-rate W-CDMA radio link performance are presented. Also presented are interference cancellation and adaptive antenna array techniques that can significantly improve the link capacity and coverage.

101-116hit(116hit)